Imperial College
London

Experimental Research on the Physics of Coal

Combustion
by
Y. Hardalupas, A.M.K.P. Taylor

Ilias Prassas and Yoko Yamanishi

Imperial College London
Department of Mechanical Engineering
Thermofluids Division

24™ Annual Meeting of Coal Research Forum
Cranfield University - 10 April 2013



Imperial College

Outline

Background
Development of novel optical instrumentation
Swirl stabilised Coal burner
Results
v Coal particle size, velocity and temperature
v Mechanisms influencing coal particle behaviour

v’ Effect of vitiated air and co-firing gas equivalence ratio on
probability of coal particle burning

v Coal particle Reactivity
Summary



Imperial College

Evidence of effect of coal particle trajectories in the
near burner region on low NOx Coal burners
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Abbas, Costen & Lockwood (1991)
“The influence of near burner region
aerodynamics on the formation and
| emission of Nitrogen Oxides in a

| pulverised coal-fired furnace”
Combustion and Flame 91: 346-363.
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Low NOx Coal burners

Recirculating Escaping

Low-NOx coal High-NOx coal particle
particle Trajectory: . Trajectory

Longer Residence
time in the oxygen
lean internal
recirculation zone
leads to reduced
NOx emissions from
fuel bound N,

DETAILED KNOWLEDGE OF THE MOTION AND TEMPERATURE OF A COAL
PARTICLE IS IMPORTANT FOR THE OPTIMISATION OF OPERATION OF LOW-NOx
BURNERS
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Shadow Doppler Anemometer for non-spherical
particle size and velocity measurements at a ‘point’

Particle shadow 1mage
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LDV transmitting Optics

Patented and commercialised by Kanomax, Japan
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Appearance of Particle Images

Particle Trajectory
Output Signal
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Recording & Reconstruction of Particle Image

Original two-
dimensional projected
image of the particle
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Additional Information obtained by SDV

Transverse
||‘ velocity
component, v

Particle
Volume

Displacement between the i
Isp w "‘ Trajectory
shadows Angle, ¢

1 V& U,
Particle Volume Flux, G II‘ G=— E =L ij

Sampling Time
Sampling Space
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Particle Temperature Measurement with spatially
resolved two-colour pyrometry

Optical Setup

fl4.7

Interference filter
___A=633nm

Photomultiplier

Optical fibre

Interference filter . .
from receiving optics

A=5145 nm

-

_— =
‘ ¥ Emitted light from
/4.7 particles at A >488 nm

dichroic mirror
transmitting A >510 nm

OPERATION IN THE VISIBLE SPECTRUM ALLOWS USE OF STANDARD GLASS
OPTICS AND PHOTODETECTORS



Imperial College

Particle Temperature Measurement
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Combined
Measurement of
~ Velocity, Size &
Temperature of
Coal Particles
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Was it char particles or soot?

N |2

Volatile flame
surrounding char

Discrimination Criterion
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DISCRIMINATION BETWEEN CHAR AND VOLATILE FLAME IS POSSIBLE
A MORE RELIABLE TECHNIQUE IS REQUIRED!
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Swirl Stabilised Coal Burner Geometry

Momentum Flux Ratio
of Coal fuel to air

streams
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Variable Swirl was Generated by Combination of
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Furnace Design for pressurised coal combustion
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Research interests on:
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Near Burner coal combustion
characteristics

Clean up of pressurised
combustion gases
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Coal Particle Size and Velocity in Swirl stabilised
Flames: Does Particle Size matter?
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Coal particle Trajectory angle and its fluctuations as
a function of particle size

The trajectory angle indicates deviation from burner centreline:

Larger Angle » Larger Deviation
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Coal Particle dispersion in Swirl stabilised Flames:
Does Particle Size matter? — “Fountain Effect”

Trajectory of Trajectory of
60 micron 20 micron
Different particle sizes reverse their
motion at different distances from the
Mean Air burner exit, leading to different
Flow residence times in the recirculation
zone.

Therefore, different sizes contribute
differently to NOx emissions.
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Coal Particle dispersion in Swirl stabilised Flames:
Does Particle Size matter? — “Centrifuging Effect”
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Radial Profiles of Mean and RMS of fluctuations of
(Char) Particle Temperatures
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Comparison of behaviour of burning and non-
burning Coal Particles
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Radial Distribution of Particle Volume Flux
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Radial Distribution of Burning Particle Fraction
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Coal Particles in swirl stabilised burner with Vitiated Air

Measurement of coal particles in swirl = 10

stabilised gas-piloted VITIATED-AIR § . X0 =0.21, T=400 °C
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Evaluation of reactivity of coal particles

It is important to evaluate the reactivity of Individual
Combusting Coal Particles, especially those of low rank
coals, which are generally wet and need drying

Difficulty:

 Need to assess heterogeneous and homogeneous

combustion phases in a controlled environment
Objective: need to assess optical discrimination between

/

1. Limiting maximum
soot cloud amplitude
e And By < 2. Measure emissivity

3. CCD pyrometry

hot char soot mantle flame L




Imperial College

Transparent Wall Reactor for study of reactivity of
coal particles J Exhaust L
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Combined measurement of particle size/shape, velocity and
temperature and discrimination between ‘char’ and ‘soot’

Flat Flame
Burner
S.B /500 , f/600
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Two Intensified CCDs!

[ TCCI]
Radiation light

Diffracted
laser light

[ TCP]
Light Proof Box

i« Measuring location (the position of the optical fibre for alignment)
! Optical measuring volume synchronisation

| TCCI measuring volume
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Vignette Criterion to identify ‘char’

TCP-Pinhole

Image of char particle
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Vignette Criterion to identify ‘soot’

TCP Pinhole

Image of soot cloud

Image of char particle
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Dlscrlmlnatlon between ‘soot’ & ‘char’
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Reactivity plots
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Concluding Remarks [1]

Shadow Doppler Velocimetry

Novel Imaging technique for sizing non-spherical rough particles

Advantages

*High spatial accuracy

‘Particle shape resolved (although currently 2-D)

Minimal Calibration

‘Robust Technique: Can be Applied to Confined Environments
-Can be Extended to Obtain More Particle Info

Disadvantage
‘Maximum Particle Density is Limited due to Forward Scattering
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Concluding Remarks [2]

INSTRUMENTATION for combined coal particle size/shape, temperature and
velocity

-C8mbined Shadow Doppler Velocimetry (SDV) - Two Colour Pyrometry
(TCP) can provide ...

v sizelvelocity/temperature correlations in coal burners

= Amplitude-based criterion for TCP improves accuracy of
measurement dramatically but...

v is based on empirical observations not deterministically
identifiable during experiments

T SCD-based TCP can help resolve type of flame when used with SDV
ut...

v suffers from lower sensitivity
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Concluding Remarks [3]

RESULTS FROM SWIRL STABILISED BURNER

Measurements in the Near-burner Region of Swirl Stabilised Gas Supported coal
particle Flames With Equivalence Ratios $=0.69 & 1.0 and Momentum Ratios of
1/30 and 1/40 showed that:

 45% Increase of the Gas Equivalence- and 25% Decrease of the
Momentum Ratio Resulted in Reductions of the Burning Fraction by 25%
and 80% Respectively.

* Most Particle Volume Flux Escaped From the Region r/D>0.6 where a
Large Fraction did not Burn.

« The Mean Char Temperature Decreased, on average, by about 100 K
Across a Radial Profile and Showed no Size-dependence.

 The Previous Observation Was Confirmed by Scatter Plots of the (Char)
Particle Size and its Instantaneous Temperature.

« Coal particle reactivity was quantified as a function of residence time



